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ABSTRACT 
 

 A new five-parameter model called the Kumaraswamy exponentiated Fréchet (Kw-

EFr) distribution is proposed and studied. The new model generalizes many well known 

distributions in the literature. It is illustrated that 27 different distribution are embedded 

in the Kw-EFr distribution. Various structural properties including explicit expressions 

for ordinary and incomplete moments, quantile, generating function and Rényi and q-

entropies are derived. The maximum likelihood method is used to estimate the model 

parameters and the observed information matrix is derived. A real data set is used to 

compare the new model with other competing models.  
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1. INTRODUCTION 
 

 For last few decades there has been a growing interest in developing generalized class of 

distributions by inducting one or more additional parameter(s) to the standard probability 

distribution. More attention has been given studying the tail behavior of distributions by 

adding shape parameters. Because of their popularity in modeling real life phenomenon 

arising from diverse area of real life situation extreme value distributions have been 

generalized using these tools by several authors. 
 

 The Fréchet distribution is a special case of the generalized extreme value 

distribution. The Fréchet distribution has applications ranging from accelerated life 

testing to earthquakes, floods, horse racing, rainfall, wind speeds, sea waves, among 

others. For more information about the Fréchet distribution and its applications see Kotz 

and Nadarajah (2000), Barreto-Souza et al. (2011) and Krishna et al. (2013). Recently, 

some generalizations of the Fréchet distribution are introduced. For example, Nadarajah 

and Gupta (2004) introduced the beta Fréchet, Krishna et al. (2013) proposed the 
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Marshall-Olkin Fréchet, Mahmoud and Mandouh (2013) introduced transmuted Fréchet, 

Mead and Abd-Eltawab (2014) introduced the Kumaraswamy Fréchet, Afify et al. (2015) 

defined the transmuted Marshall-Olkin Fréchet and Afify et al. (2016a) proposed the 

Kumaraswamy Marshall-Olkin Fréchet distributions. Nadarajah and Kotz (2003) 

proposed the exponentiated Fréchet (EFr) distribution with cumulative distribution 

function (cdf) (for    ) is given by  
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where     is a scale parameter and    and     are two shape parameters.  
 

 The corresponding probability density function (pdf)is given by 
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 The aim of this paper is to define and study a new model called the Kumaraswamy 

exponentiated Fréchet (Kw-EFr) distribution. The main feature of this model is that two 

additional parameters will be introduced in (1) to give greater flexibility in the form of 

the generated distribution. Using the Kumaraswamy-G (Kw-G) family introduced by 

Cordeiro and de Castro (2011), we construct the new five-parameter Kw-EFr model. We 

give a comprehensive description of some mathematical properties of the new 

distribution with the hope that it will attract wider applications in reliability, engineering 

and other areas of research. The class of Kw-G of distributions is stems from the 

following general construction due to Cordeiro and de Castro: if   denotes the baseline 

cumulative function of a random variable, then a generalized class of distributions can be 

defined by 
 

   ( )    ,   ( ) -                  (3) 
 

where     and     are two additional shape parameters. Correspondingly, the pdf of 

Kw-G family is given by  
 

   ( )     ( ) ( )   ,   ( ) -                (4) 
 

where  ( )    ( )    and   and   are two additional positive shape parameters. 

Clearly when       we obtain the baseline distribution. An attractive feature of this 

distribution is that the two parameters   and   can afford greater control over the weights 

in both tails and in its centre. 
 

 The rest of the paper is organized as follows: In Section 2, we derive the expression 

the subject distribution and provide useful mixture representations for its pdf. In Section 

3, we provide some mathematical properties of the Kw-EFr distribution. The maximum 

likelihood estimates (MLEs) of the unknown parameters are given in Section 4. Section 5 

discusses simulation results to assess the performance of the proposed maximum 

likelihood estimation procedure. An application to a real data set is performed in Section 

6 to show the potentiality of the proposed model. Finally, some concluding remarks are 

given in Section 7. 
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2. THE KW-EF MODEL 
 

 Consider the  ( ) in Equation (3) to be the cdf of the EFr distribution given in (1) so 

that the cdf of Kw-EFr distribution is given by 
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where,     is a scale parameter and           are shape parameters.  
 

 The pdf of the Kw-EFr distribution is given by 
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 The hazard rate function (hrf) of   reduces to 
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Using the series expansion  
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the pdf of the Kw-EFr distribution in (5) can be expressed in the mixture form as  
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Equation (6) can be further expressed in terms of the Fr densities as  
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Or equivalently 
 

   ( )  ∑   
         ( )                 (7) 

 

where     ( )is the Fréchet pdf of with scale parameter  (   )    and shape 

parameter   and 
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 Equation (7) reveals that the Kw-EFr density can be expressed as an infinite linear 

combination of Fr densities. Thus, some of its mathematical properties can be obtained 

directly from those properties of the Fr distribution. 
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 The Kw-EFr distribution is very flexible model that approaches to different 

distributions when its parameters are changed. The Kw-EFr distribution includes as 

special cases 27 well known and new probability distributions which are provided in 

Table 1. 

 

Table 1 

Sub Models of Kw-EFr(         ) Distribution 

 Model                       Author  

 Kw-Fr                      Mead and Abd-Eltawab (2014)  

 Kw-IE                      –  

 Kw-IR                      –  

 Kw-EIE                      New  

 Kw-EIR                      New  

 Kw-EGuII                          New  

 Kw-EGIW     
 

                    New  

 Kw-GuII                          New  

 Kw-GIW     
 

                    New  

 Kw-IW    
 

                    Shahbaz et al. (2012)  

 GEFr                       New  

 EGFr                       New  

 GEIE                       New  

 GEIR                       New  

 GEGIW     
 

                    New  

 EGIW     
 

                    New  

 GIW     
 

                    de Gusmao et al. (2011)  

 IW                       Keller and Kamath (1982)  

 EGGuII                          New  

 EGuII                          New  

 GuII                          Gumbel (1958)  

 EFr                       Nadarajah and Kotz (2003)  

 EIE                       –  

 EIR                       –  

 Fr                       Fréchet (1924)  

 IE                       Keller and Kamath (1982)  

 IR                       Trayer (1964)  

G=Generalized, GuII=Gumbel type-2, I=inverse, E=exponentiated, E=exponential, 

R=Rayliegh and W=Weibull  

 

 Figure 1 and Figure 2, respectively, display possible shape of the pdf and hrf of  

Kw-EFr distribution for selected values of the parameters. 
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Figure 1: Probability Density Function of Kw-EFr Distribution 

 

 
Figure 2: Hazard Rate Function of Kw-Fr Distribution 

 

2. MATHEMATICAL PROPERTIES 
 

 In this section, some statistical properties of the Kw-EFr distribution including 

quantile functions (qf), ordinary and incomplete moments, moment generating functions 

(mgf), Rényi and q-entropies, order statistics and moments of the residual and reversed 

residual lifes are derived. 

 

3.1 Quantile Function 

  The qf of a distribution is the real solution of  (  )    for      . For Kw-EFr 

distribution the quantiles are given by  
 

      >   :  √  √  √      

;?

    

           (8) 

 

 By substituting       in Equation (8) we can get the median of the Kw-EFr 

distribution. 



The Kumaraswamy Exponentiated Fréchet Distribution 182 

3.2 Moments 
 Some of the most important features and characteristics of a distribution can be 

studied through moments (e.g. tendency, dispersion, skewness and kurtosis). The  th 

ordinary moment of   can be written from (7) as 
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 Then, for     , we obtain 
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Setting     in (9), we have the mean of  .  
 

 The effects of parameters   and   on mean, variance, skewness and kurtosis for given 

values of     and   are displayed in Figure 3 and 4, respectively.  

 

 
 

Figure 3: Plots of Mean and Variance 

 

 
 

Figure 4: Plots of Skewness and Kurtosis 
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 In Table 2 we provide the numerical measure of the median, mean, variance, 

skewness and kurtosis of the Kw-EFr distribution for selected values of the parameters to 

illustrate their effect on these measures.  

 

Table 2 

Median, Mean, Variance, Skewness, Kurtosis for selected Values of the Parameters 

          Median Mean Variance Skewness Kurtosis 

1 5 2 1 1 0.959 0.991 0.031 1.502 8.103 

2 5 2 1 1 1.919 1.982 0.124 1.502 8.103 

3 5 2 1 1 2.879 2.973 0.280 1.502 8.103 

5 5 2 1 1 4.799 4.956 0.777 1.502 8.103 

8 5 2 1 1 7.678 7.929 1.990 1.502 8.103 

2 5 2 1 1 1.919 1.982 0.124 1.502 8.103 

2 6 2 1 1 1.933 1.981 0.084 1.342 6.974 

2 7 2 1 1 1.942 1.981 0.060 1.237 6.327 

2 8 2 1 1 1.949 1.982 0.046 1.163 5.909 

2 10 2 1 1 1.959 1.984 0.029 1.064 5.406 

2 5 1 1 1 2.152 2.328 0.535 3.535 48.09 

2 5 2 1 1 1.919 1.982 0.124 1.502 8.103 

2 5 3 1 1 1.826 1.862 0.068 1.037 5.349 

2 5 5 1 1 1.733 1.752 0.036 0.667 3.976 

2 5 8 1 1 1.667 1.678 0.023 0.432 3.429 

2 5 2 1 1 1.919 1.982 0.124 1.502 8.103 

2 5 2 2 1 2.102 2.169 0.132 1.574 8.614 

2 5 2 3 1 2.211 2.280 0.138 1.615 8.905 

2 5 2 5 1 2.351 2.423 0.146 1.665 9.246 

2 5 2 8 1 2.482 2.558 0.156 1.705 9.528 

2 5 2 1 1 1.919 1.982 0.124 1.502 8.103 

2 5 2 1 2 1.771 1.796 0.047 0.809 4.426 

2 5 2 1 3 1.706 1.721 0.030 0.567 3.715 

2 5 2 1 5 1.639 1.646 0.019 0.342 3.280 

2 5 2 1 8 1.589 1.592 0.013 0.185 3.095 
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3.3 Moment Generating Function 

 The mgf of the Kw-EFr distribution, denoted by   ( )   (   ), (for    ), is 

given by 
 

    ( )  ∑   
     

(  ) 
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 We can express the mgf of Kw-EFr distribution in terms of Wright generalized 

hypergeometric function as below: 
 

 Note that the pdf and cdf of the Fréchet distribution (for    ) are, respectively, 

given by  
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 First, we provide the generating function of the Fréchet model as discussed by Afify 

et al. (2016b). 
 

 Setting      , we can write this mgf as  
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 By expanding    .
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where the gamma function is well-defined for any non-integer  . 
 

 Consider the Wright generalized hypergeometric function (Srivastava and Karlsson, 

1985, p. 21) defined by  
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 Then, we can write  ( ) as  
 

   ( )     0
(      )
 

    1                  (10) 

 

 Combining expressions (7) and (10), we obtain the mgf of the Kw-EFr distribution as  
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3.4 Incomplete Moments 
 The main application of the first incomplete moment refers to the Bonferroni and 

Lorenz curves. These curves are very useful in economics, reliability, demography, 

insurance and medicine. The  th incomplete moments, denoted by   ( )  of a random 

variable   is given by 
 

    ( )  ∫  
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 Using Equation (7) and the lower incomplete gamma function, if      we obtain 
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3.5 Rényi and q-Entropies 

 Entropy refers to the amount of uncertainty associated with a random variable (    ). 
The Rényi entropy has numerous applications in information theoretic learning, statistics 

(e.g. classification, distribution identification problems, and statistical inference), 

computer science (e.g. average case analysis for random databases, pattern recognition, 

and image matching) and econometrics (Källberga et al., 2014). The Rényi entropy of a 

       represents a measure of variation of the uncertainty. The Rényi entropy is defined 

by  
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Therefore, the Rényi entropy of the        is given by 
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 The q-entropy, denoted by   ( ), is defined by  
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3.6 Order Statistics 

 If              is a random sample of size   from a continuous population with cdf 

 ( ) and pdf  ( ), and  ( )  ( )      ( ) be the corresponding order statistics. Then the 

pdf of  ( )is given by 
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      ( )  
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 The joint pdf of  (   ) and  (   )          is given by  
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 The pdf of the  th order statistics for a Kw-EFr distributionis given by  
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 The joint pdf of  (   ) and  (   )        , for a Kw-EFr distribution is given by  
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 Let              are independently identically distributed ordered random variables 

from the Kw-EFr distribution having median order X     pdf is given by 
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3.7 Moments of the Residual and Reversed Residual Lives 
 Several functions are defined related to the residual life. The failure rate function, 

mean residual life function and the left censored mean function, also called vitality 

function. In reliability analysis it is well known that these three functions uniquely 

determine  ( ) (see Gupta (1975), Kotz and Shanbhag (1980) and Zoroa et al. (1990)). 

Other interesting concept is the partial moments, defined by  
 

    ( )  ∫  
 

 
(   )   ( )               

 

 Let   be a     , usually representing the life length for a certain unit at age   (where 

this unit can have multiple interpretations), then the           |   , represents 



Mahmoud M. Mansour et al. 187 

the remaining lifetime beyond that age. Moreover, the  th moments of residual life, 

denoted by  
 

    ( )   ((   ) |   )              
 

uniquely determine  ( ) (Navarro et al., 1998). The  th moments of the residual life is 

given by 
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Therefore, the  th moments residual life given that     is given by 
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where  (   )  ∫  
 

 
          is the the upper incomplete gamma function. 

 

 The mean residual life function (MRL) of the Kw-EFr distribution can be obtained by 

setting     in (10). The MRL has many applications in survival analysis in biomedical 

sciences, life insurance, maintenance and product quality control, economics and social 

studies, demography and product technology (Lai and Xie, 2006). 
 

 The  th moments of the reversed residual life, denoted by   ( ), is defined as 

  ( )   ((   ) |   ),             . The  th moments of the residual life is 

given by 
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 The mean waiting time (MWT) also called mean reversed residual life function of the 

Kw-EFR distribution can be obtained by setting     in Equation (11). 

 

4. PARAMETER ESTIMATION 
 

 In this section, we consider the estimation of the parameters of Kw-EFr (         ) 
model. Let              be a random sample from Kw-EFr distribution with unknown 

parameter vector   (         ) . Therefore, the log-likelihood function   is given by 
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 The above equation can be maximized either directly by using numerical techniques 

in R (optim function), SAS (PROC NLMIXED), Ox program (sub-routine MaxBFGS) or 

by solving the nonlinear likelihood equations obtained by differentiating    
 

 Now differentiating   with respect to the parameters         and   we get  
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 Setting the above nonlinear system of equations equal to zero and solving these 

equations simultaneously yields the MLE  ̂  ( ̂  ̂  ̂  ̂  ̂) . These equations cannot be 

solved analytically and statistical software can be used to solve them numerically by 

means of iterative techniques such as the Newton-Raphson algorithm. 

 

5. SIMULATION STUDY 
 

 In this section, we provide the simulation results to assess the performance of the 

proposed maximum likelihood estimation procedure. An ideal technique for simulating 

from (0.5) is the inversion method. 
 

 One would simulate   by  
 

     >   :  (  .  (   )
 

 /

 

 
)

 

 

;?

    

  

 

where    (   ) is a uniform random number. For different combination of         and 

  samples of sizes                   and      are generated from the Kw-EFr 

distribution. We repeated the simulation       times and calculated the mean and the 

root mean square errors (RMSEs). The empirical results are given in Table 3.  
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Table 3 

 Empirical Means and the RMSEs of the Kw-EFr Distribution  

for                                

   ̂  ̂  ̂  ̂  ̂ 

100 
2.093 3.283 2.426 0.584 2.440 

(0.471) (1.111) (2.574) (0.535) (2.141) 

200 
2.076 3.264 2.061 0.492 2.465 

(0.387) (0.874) (1.497) (0.305) (2.062) 

300 
2.056 3.141 2.229 0.542 02.214 

(0.387) (0.684) (2.029) (0.354) (1.703) 

500 
2.017 3.212 1.952 0.489 2.071 

(0.281) (0.623) (1.215) (0.285) (1.289) 

1000 
2.002 3.200 1.917 0.474 1.922 

(0.247) (0.502) (0.885) (0.206) (1.186) 

 

 It is evident that the estimates are quite stable and are close to the true value of the 

parameters for these sample sizes. Additionally, as the sample size increases the RMSEs, 

provided in the parentheses, decreases as expected. 

 

6. APPLICATION 
 

 In this section, we provide an application to real data to illustrate the flexibility of the 

Kw-EFr model. The goodness-of-fit statistics for this model is compared with other 

competitive models and the MLEs of the model parameters are provided. We will make 

the use of a real data set (Smith and Naylor, 1987) consists of the following    

observations of the strengths of 1.5 cm glass fibres, originally obtained by workers at the 

UK National Physical Laboratory. 
 

 We compare the fits of the Kw-EFr distribution with other competitive models, 

namely: the EFr, beta Fréchet (BFr) (Nadarajah and Gupta, 2004), gamma extended 

Fréchet (GEFr) (da Silva et al., 2013), transmuted Fréchet (TFr) (Mahmoud and 

Mandouh, 2013), Marshall-Olkin Fréchet (MOFr) (Krishna et al., 2013) and Fréchet (Fr) 

distributions with corresponding densities (for    ): 

 

 BFr:  ( )  
   

 (   )
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 The parameters of the above densities are all positive real numbers except for the TFr 

distribution for which | |   . 
 

 In order to compare the fitted models, we consider some goodness-of-fit measures 

including the Akaike information criterion (   ), Bayesian information criterion (   ), 

Hannan-Quinn information criterion (    ), consistent Akaike information criterion 

(    ) and    ̂, where  ̂ is the maximized log-likelihood. Furthermore, we use the 

Anderson-Darling (  ) and the Cramér-von Mises (  ) statistics in order to compare the 

fits of the new model with other nested and non-nested models.  
 

 Table 4 lists the values of    ̂,    ,     ,     ,    ,    and    whereas the 

values the MLEs, standard errors (SEs) of the parameters and 95% confidence intervals 

are given in Table 5. These numerical results are obtained using the MATH-CAD 

program. From Table 4, it is noted that the Kw-EFr distribution has the lowest values for 

the goodness-of-fit statistics among all fitted models. The plots comparing the Kw-EFr 

distribution with other competing distribution is given in Figure 5. These plots also 

indicate that the Kw-EFr distribution fits the subject data well.  

 

Table 4 

Goodness-of-Fit Statistics for Strengths of     cm Glass Fibre Data 

Model    ̂                         

Kw-EFr                                          

EFr                                          

BFr                                          

GEFr                                          

Fr                                         

TFr                                              

MOFr                                              
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Table 5 

MLEs, SEs and 95% Confidence Intervals for Strengths of     cm Glass Fibre Data  

Model Parameters Estimates SEs 95% Confidence Interval 

Kw-EFr                 (9.668,12.604) 

                (0.124, 0.195) 

                 (0.00, 81.501) 

                  (2.51, 148.35) 

                  (0.00, 3353.41) 

EFr               (0.732,1.266) 

               (2.044,13.588) 

                  (0.00,361.422) 

BFr                (0.327,0.966) 

                (0.119,3.984) 

                  (0.00,38.707) 

                  (0.00,81.332) 

GEFr                (0.356,1.128) 

                (0.00,3.528) 

                 (0.00,66.210) 

                 (0.00,32.804) 

Fr               (2.429,3.347) 

               (1.148,1.379) 

TFr                (2.466,3.113) 

                (1.240,1.373) 

                (-0.278, 0.537) 

MOFr                (1.892,2.883) 

                (1.101,1.987) 

                (0.00, 0.976) 

 

  
Figure 5: Fitted pdf of Kw-EFr and other Distribution for the Glass Fibre Data 
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7. CONCLUDING REMARKS 
 

 In this study we propose a new model, the so-called the Kw-EFr distribution which 

extends the EFr distribution in the analysis of data with real support. An obvious reason 

for generalizing a standard distribution is because the generalized form provides larger 

flexibility in modeling real data. We derive expressions for the ordinary and incomplete 

moments, quantile and generating functions, Rényi and q-entropy. We discuss maximum 

likelihood estimation for estimating parameters. We have presented an example to 

illustrate the application of the subject distribution to model real data. The Kw-EFr 

provides a better fit than several other nested and non-nested models for the subject data.  
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